WebJul 25, 2024 · the carburizing time necessary to achieve a carbon concentration is 31.657 hours. Explanation: Given the data in the question; To determine the carburizing time necessary to achieve the given carbon concentration, we will be using the following equation: (Cs - Cx) / (Cs - C0) = ERF( x / 2√Dt) where Cs is Concentration of carbon at … WebDetermine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron–carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be …
Carburizing - Wikipedia
WebProblem 11. Determine the carburizing time necessary to achieve a carbon concentration of 0.30 wt\% at a position 4 m m into an iron-carbon alloy that initially contains 0.10 wt % … Webquestions and answers. Determine the carburizing time necessary to achieve a carbon concentration of 0.48wt% at a position 4.3 mm into an iron-carbon alloy that initially contains 0.20wt%C. The surface concentration is to be maintained at 1.0wt%C, and the treatment is to be conducted at 1140∘C. Assume that D0=5.1×10−5 m2/s and Qd =160 kJ/mol. earliest history of man
[Solved] Determine the carburizing time necessary SolutionInn
Web7.11 Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron-carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000°C. Use the diffusion data for γ-Fe in Table 7.2. WebDetermine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron-carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000 °C. Use the diffusion data for y-Fe. 13. WebEnter the email address you signed up with and we'll email you a reset link. earliest hot air balloon